HYDROïD Humanoid Robot Head with Perception and Emotion Capabilities: Modeling, Design, and Experimental Results
نویسندگان
چکیده
In the framework of the HYDROïD humanoid robot project, this paper describes the modeling and design of an electrically actuated head mechanism. Perception and emotion capabilities are considered in the design process. Since HYDROïD humanoid robot is hydraulically actuated, the choice of electrical actuation for the head mechanism addressed in this paper is justified. Considering perception and emotion capabilities leads to a total number of 15 degrees of freedom for the head mechanism, which are split into four main sub-mechanisms: the neck, the mouth, the eyes, and the eyebrows. Biological data and kinematics performances of human head are taken as inputs of the design process. A new solution of uncoupled eyes is developed to possibly address the masterslave process that links the human eyes as well as vergence capabilities. Modeling each sub-system is carried out in order to get equations of motion, their frequency responses, and their transfer functions. The neck pitch rotation is given as a study example. Then, the head mechanism performances are presented through a comparison between model and experimental results validating the hardware capabilities. Finally, the head mechanism is integrated on the HYDROïD upper-body. An object tracking experiment coupled with emotional expressions is carried out to validate the synchronization of the eye rotations with the body motions.
منابع مشابه
Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملMathematical Modeling of an electro-hydraulic actuator for humanoid robots
The work presented in this paper is based on a novel integrated and compact hydraulic robotic actuator [1] (BIA patentUS20110085922), intended for the hydraulic humanoid robot HYDROïD. This actuator solves the problem of autonomy for hydraulic humanoid robots as it can be integrated to operate each joint separately. Thus, eliminating the need for a central hydraulic power pack. Also, due to its...
متن کاملDesign, Modeling, Implementation and Experimental Analysis of 6R Robot (TECHNICAL NOTE)
Design, modeling, manufacturing and experimental analysis of a six degree freedom robot, suitable for industrial applications, has been described in this paper. The robot was designed on the assumption that, each joint has an independent DC motor actuator, with gear reduction and measuring sensor for angular joint position. Mechanical design of the robot was done using Mechanical Desktop and ma...
متن کاملDeveloping hardware capability for mobile manipulation by low-cost humanoid robot (LOCH)
Purpose – Autonomous mobile manipulation depends on a lot of effort at various levels. In general, the hardware design is as important as algorithm (or software) design. In particular, the absence of certain capabilities of hardware can seriously affect the feasibility and performance of algorithms. The purpose of this paper is to present work on developing hardware capability for mobile manipu...
متن کاملVizzy: A Humanoid on Wheels for Assistive Robotics
The development of an assistive robotic platform poses exciting engineering and design challenges due to the diversity of possible applications. This article introduces Vizzy, a wheeled humanoid robot with an anthropomorphic upper torso, that combines easy mobility, grasping ability, human-like visual perception, eye-head movements and arm gestures. The humanoid appearance improves user accepta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Front. Robotics and AI
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016